Year 9 Course Outline

TERM 1

Week	Algebra	Geometry	Measurement	Number	Statistics
1	Introduction to Expressions	Introduction to angles	Introduction to Time	Excel work Computer lab Spreadsheet	Introduction to Statistics
2	Expressions (Substituting)	Naming angles measuring angles	Time - reading tables	Working with spreadsheets	Reading data tables Bar graphs
3	Expressions (Simplifying)	Drawing angles	$\begin{aligned} & \text { Time } \\ & 12 \text { - hour } \\ & 24 \text { - hour } \end{aligned}$	Working with spreadsheets Rounding	Dot plots
4	Expressions (Like terms)	Drawing and estimating angles	Time Daylight saving Time zones	Working with spreadsheets Add/subtract integers	Strip graphs
5	Expressions (Add like terms)	Angles on a straight line	Time Calendar	Working with spreadsheets Divide integers	Pictograms
6	Expressions (Subtract/Add like terms)	Angles complementary supplementary	Money Rounding	Working with spreadsheets Compound interest	Pie graphs
7	Introduction to formulae.	Angles vertically opposite + proof	Money Reading tables	Working with spreadsheets Powers	Interpreting data
8	Formulae applications	Angles at a point	Temperature Reading	Working with spreadsheets Trend analysis	Intro to stem and leaf
9	Introduction to patterns and sequences	Angles - reflex	Types of scales Reading	Introduction to decimals	Stem and leaf
10	Working with expressions	Angles missing	Length Measure and estimate	Decimals Comparing decimal values	Line graphs

Teachers can choose to work across each row with a different topic each lesson or choose to work down each column with 10 consecutive lessons on each topic.

Year 9 Course Outline TERM 2					
Week	Algebra	Geometry	Measurement	Number	Statistics
11	Brackets these are worked first	Angles - rules for finding	Length Conversions $\mathrm{mm}-\mathrm{cm}$ and $\mathrm{mm}-\mathrm{m}$	Decimals Adding Subtracting	Working with spreadsheets and graphs
12	More brackets	Introduction to reflection	Length Conversions $\mathrm{cm}-\mathrm{m}$ and km - m	Decimals Multiplying Dividing	Data averages Mean
13	More operations	Reflection notation	Scale drawings Estimate distances	Decimals Money	Data averages Median
14	Introduction to powers	Reflection properties	Scale drawings Estimate lengths	Decimals Rounding Calculators	Data averages Mode
15	Index form	Introduction to rotation	Speed Distance/time	Decimals (Spreadsheet)	Reading a Spreadsheet
16	Index form substituting	Rotation drawing accurately	Speed Average	Introduction to integers Comparing	Data Mean Median Mode
17	Index form multiplying	Rotation properties	Introduction to weight or mass	Integers Add/Subtract Multiply Divide	Data Frequency tables
18	Index form Dividing	Introduction to translation	Weight Metric conversions	Integers Applications	Data Histograms
19	Equations $N+4=12$	Translation drawing accurately	Liquids Volumes Weights	Sequences	Data Sampling
20	Equations $N-4=12$	Translation Introduction to vectors	Metric system Prefixes	Integers Practices Drills	Data Designing questionnaires

Year 9 Course Outline TERM 3					
Week	Algebra	Geometry	Measurement	Number	Statistics
21	$\begin{aligned} & \text { Equations } \\ & 4 \times N=12 \\ & \mathrm{~N} / 4=12 \end{aligned}$	Translation properties	Area of different shapes	Multiples - follow on from sequences	Probability
22	Introduction to equation problems	Parallel lines and perpendiculars	Area of rectangles and squares	Multiples Common	Probability Tossing a die
23	More equation problems	Parallel lines Illusions	Area of triangles	Divisibility of factors	Probability Exercises
24	Equations with integers	Alternate angles	Area of parallelograms	Factors common	Probability Exercises
25	Equations with fractions Spreadsheet	Corresponding angles	Area of compound shapes	Prime numbers and prime factors	Probability Tree diagrams
26	Making up equations	Co-interior angles	Area of offset triangles and squares	Powers/Roots Index, Base	Probability Tree diagrams
27	Introduction use of rackets in Algebra	Angles Proofs	Area Hectares	Powers/Roots Negative numbers	Probability Tree diagrams
28	Expanding brackets distributive rule	Bearings	Area Perimeter	Powers/Roots Applications Area/Volume	Probability Tree diagrams
29	Expanding brackets integers	Bearings Applications	Area Circle	Square Roots	Probability General
30	Expanding brackets collect like terms	Introduction to rotational symmetry	Area Circumference Diameter Perimeter	Introduction to BEDMAS	Probability General

Year 9 Course Outline TERM 4					
Week	Algebra	Geometry	Measurement	Number	Statistics
31	Equations with brackets	Order of symmetry Axes of symmetry	Volume Blocks	BEDMAS Puzzles	
32	Equations with brackets	Symmetry in triangles: Equilateral Isosceles Scalene	Volume Cuboids	Introduction to fraction form	
33	Expressions Factorise numbers	Symmetry Quadrilaterals	Volume Prisms	Fractions Number line	
34	Expressions Factorise letters	Symmetry in quadrilaterals (Properties)	Volume Liquids	Fractions Equivalent	
35	Introduction to Co-ordinate Geometry Grids	3D Shapes Faces, edges and vertices		Fractions Simplifying	
36	Mathematical co-ordinates	Isometric drawings		Fractions Add/Subtract Multiply Divide	
37	Introduction to line graphs	Isometric drawings		Fractions Decimal conversions	
38	Line graphs Distance-time	Introduction to nets		Percentages Conversions	
39	Co-ordinate rules linking x and y co-ordinates	Nets Views		Percentages Increase Decrease	
40	Line graphs Interpreting	Nets Constructions			

YEAR 9 -TERM ONE EXAM

You will need a calculator, a pen, a ruler and a protractor to do this exam.
DO NOT WRITE YOUR ANSWERS ON THIS PAPER.

NUMBER

1. $68.9+5.46+21.13=$
2. $0.25 \div 0.3625=$
3. $(7445-253) \div 1798=$
4. $\quad 17$ litres of petrol cost $\$ 37.23$. How much does 1 litre of petrol cost?
5. Write this recurring decimal in long form: 32.8124
6. Write this recurring decimal in short form: 0.4626262626
7. $4 \div 7=$
8. $51.162 \times 98.61=$ (3dp)
9. How much for 1.32 kg of carrots at $\$ 2.83 \mathrm{a} \mathrm{kg}$? Round sensibly.
10. US $\$ 0.7043$ is worth $\mathrm{NZ} \$ 1$. How many US\$ is $\mathrm{NZ} \$ 250$?

Integers

Write the following sets of numbers (Questions 11 -14) from smallest to largest:
11. $\{+4,-4,+1,-2,+6\}$
12. $\{92,-63,-65,-24\}$
13. $\{-593,+344,-768,+7,0\}$
14. $\{-84,-63,+13,+52,0,+11\}$
15. The temperature was $3^{\circ} \mathrm{C}$ and then it fell $6^{\circ} \mathrm{C}$. What was the temperature then?
16. $-5-{ }^{+} 4=$
17. $-94-{ }^{+} 81=$
18. $-42-3+-7--6=$
19. $-5 \times-2 \times 3=$
20. $2 \times{ }^{-6} \times-7 \times-3=$

ALGEBRA

Write an equivalent algebraic expression for each of these:
21. x take away 9
22. 7 more than x
23. 13 lots of x
24. 15 less than x
25. The number of days in x weeks

If $p=4, q=3, r=2$, work out the following:
26. $5 p$
27. pqr
28. $4 p q$
29. 10 pr

Simplify these expressions:
30. $8 \times 3 f=$
31. $3 \mathrm{a} \times 5 \mathrm{~b}=$
32. $4 \times 2 p \times 3 q \times r=$
33. $q \times r \times p=$

Simplify these expressions:
34. $2 x+3 y+6 x=$
35. $2 q-2 p+4 p=$
36. $3 x+7 y-z+2 x=$
37. $c+3 d+5 e-2 c=$
38. $5 x+6 y-2 x+3 y=$
39. $6 x+8-x+3=$
40. $y+2 y+8-7+y=$

GEOMETRY

1

Write whether each of the above angles is reflex, acute, straight or obtuse:
41. Angle $1=$
42. Angle $2=$
43. Angle $3=$
44. Angle $4=$

Name the angles marked 5, 6, 7 and 8
45. Angle $5=$
46. Angle $6=$
47. Angle $7=$
48. Angle 8 =

Measure these angles with a protractor.

49. Angle $9=$
50. Angle $10=$
51. Angle $11=$
52. Angle $12=$
53. Angle $13=$

Work out the size of each angle below. The diagrams are not to scale.

54. Angle $\mathrm{A}=$
55. Angle $B=$
56. Angle $\mathrm{C}=$

Say whether the following statements are True or False:
57. 112° and 68° are complementary.
58. 60° and 120° are supplementary.
59. 46° and 44° are complementary.
60. 35° and 65° are supplementary.

MEASUREMENT - Time and Money

Write these times using digits and $\mathrm{am} / \mathrm{pm}$:
61. Half past eight in the morning.
62. Twenty to four in the afternoon.
63. Ten minutes to midnight.
64. Five minutes to midday.
65. Quarter to nine in the evening.

Write these using the 24-hour clock:
66. Half past seven in the evening.
67. Twenty past nine in the morning.
68. Three thirty after school.
69. 11.10 pm
70. 8.40 am
71. How many minutes in 4 hours?
72. How many months in 4 years?
73. If it was Tuesday yesterday, what will it be the day after tomorrow?
74. The Treaty of Waitangi was signed in 1820, 1830, 1840, 1850 or 1860 ?

The months of winter are June, July, August. Write down the months of:
75. Summer $=$
76. Autumn $=$
77. Spring $=$

Here is a price list from a burger bar:

Item	Price	
Chicken sandwich	$\$ 3.75$	
Hamburger	$\$ 3.50$	
Cheeseburger	$\$ 3.90$	Large \$2.10
Fries	Small \$1.30	Large \$1.80
Cola	Small \$1.10	

How much will it be for:
78. 4 hamburgers and three small colas?
79. 2 cheeseburgers, 2 large fries, 2 small colas?
80. How much change would you get if you bought 4 cheeseburgers with a $\$ 20$ note?

STATISTICS

Here is a table of weather data for our town last year:

Month	Average max. temperature $\left({ }^{\circ} \mathrm{C}\right)$	Average min. temperature $\left({ }^{\circ} \mathrm{C}\right)$	Raindays	Rainfall (mm)
January	25.7	16.3	5	54
February	23.8	16.0	6	67
March	22.1	14.9	4	102
April	19.4	10.9	11	83
May	17.5	6.8	13	110
June	15.8	3.4	12	118
July	15.0	3.1	18	132
August	16.1	5.8	15	143
September	17.2	7.9	11	83
October	18.0	10.4	8	23
November	20.4	12.6	8	74
December	22.5	14.9	6	68

81. Which month was the coldest?
82. Which month had the most amount of rain?
83. Which was the driest month?
84. Which two months had the same rainfall?
85. How many months were hotter than $12^{\circ} \mathrm{C}$?
86. Calculate the total amount of rainfall during the year.
87. Did the first or second half of the year have fewer rainy days?

Here are the names of 10 different types of graphs:

Strip graph	Histogram	Line graph	Pictograph	Pressure graph
Stem and Leaf	Pie graph	Dot plot	Bar graph	Temperature graph

9

10

11

14

	9	3	7	8		
8	2	1	0	5	6	
7	3	7	8	9		
6	6	5				
5	1					

Name the graphs above:
88. Graph 8 is called \qquad
89. Graph 9 is called \qquad
90. Graph 10 is called \qquad
91. Graph 11 is called \qquad
92. Graph 12 is called \qquad
93. Graph 13 is called \qquad
94. Graph 14 is called \qquad
95. Graph 15 is called \qquad
96. List the first 5 multiples of 19
97. Simplify: $5 \mathrm{c}+4 \mathrm{c}+17-15+\mathrm{c}=$
98. At five o'clock, how many degrees are there between the minute hand and the hour hand?
99. Use your calculator to add these times:

$$
\begin{array}{r}
\text { Hour : Min : Sec } \\
5: 54: 35 \\
+\quad 2: 27: 34
\end{array}
$$

100. A train is 3 kilometres long. It is travelling at $30 \mathrm{~km} / \mathrm{h}$ - or $1 / 2$ kilometre per minute. How long would it take to completely cross a bridge that is 3 kilometres long?

The NZ Centre of Mathematics

NAME \qquad MATHS TEACHER \qquad

NUMBER		ALGEBRA	
1		21	
2		22	
3		23	
4		24	
5		25	
6		26	
7		27	
8		28	
9		29	
10		30	
11		31	
12		32	
13		33	
14		34	
15		35	
16		36	
17		37	
18		38	
19		39	
20		40	

The NZ Centre of Mathematics

NAME \qquad MATHS TEACHER \qquad

GEOMETRY		MEASUREMENT	
41		61	
42		62	
43		63	
44		64	
45		65	
46		66	
47		67	
48		68	
49		69	
50		70	
51		71	
52		72	
53		73	
54		74	
55		75	
56		76	
57		77	
58		78	
59		79	
60		80	

The NZ Centre of Mathematics

NAME \qquad MATHS TEACHER \qquad

STATISTICS		
81		
82		
83		
84		
85		
86		
87		
88		
89		
90		
91		
92		
93		
94		
95		
96		
97		
98		
99		
100		

The DS-742ET

Mahobe have added some amazing technology into their new eTool advanced scientific calculator.

- Equation solving.
- Enhanced statistics.
- Improved powers and fraction display.

This calculator is designed to handle even the toughest assignments. If you use any other calculator then good luck. With a Mahobe Resource you can have an added confidence that the answer will be correct.

YEAR 9 -TERM TWO PRACTICE EXAM

You will need a calculator, a pen and a ruler to do this exam.
DO NOT WRITE YOUR ANSWERS ON THIS PAPER.

NUMBER

1. Put in order from smallest to largest: $4.8062,4.095,4.86,4.806,4.095$
2. $179.5+44.68=$
3. $11.386-10.965=$

Suzanne won a Mahobe College 100 m swimming race in a time of 2 minutes. She broke the previous record by 3.5 seconds.
4. What was the previous record?
5. How fast was Suzanne swimming in km / h ?
6. $0.5 \times 0.3=$
$8 \times 0.4=$
$0.007 \times 0.3=$
$5.0 \times 0.8=$
7. $0.6 \times 10=$
$0.55 \times 100=$
$0.625 \times 1000=$
$0.008066 \times 1000=$

Money

Foreign exchange rates (Buy note)
Australia 0.7623
United States 0.8601
Japan 84.5271
How much foreign currency will you receive when you change:
8. $\mathrm{NZ} \$ 700$ to US dollars?
9. $\mathrm{N} Z \$ 900$ to Australian dollars?
10. $\mathrm{N} Z \$ 15,000$ to Japanese yen?
11. $90.6 \div 10=$
$0.78 \div 100=$
$0.00635 \div 0.25=$
$(78.15+0.0035) \div 0.05=$
12. Debbie buys 8 bags of crisps for $\$ 9.20$. What does one bag cost?
13. If 5 rabbits eat 12.5 lettuces in 5 days, how many lettuces will 10 rabbits eat in 10 days?

Round your answer sensibly
14. A 48 cm strip of liquorice is cut into 7 equal pieces. How long is each piece?

Integers

The temperature at midnight is $-6^{\circ} \mathrm{C}$. What will the new temperature be if...
15. ...it falls by $5^{\circ} \mathrm{C}$ at 1 am ?
16. ...it rises by $9^{\circ} \mathrm{C}$ at 2 am ?

Put in order from smallest to largest:
17. $-393,{ }^{+} 427,-822,-4,-6$

Calculate

18. ${ }^{+} 4+{ }^{-} 5+-2+{ }^{+} 10=$
19. $-6 x^{+} 2=$
20. $2 x^{-} 4 x^{-} 5 x^{-} 5=$

ALGEBRA

If $x=10$ and $y=4$
Find the value of:
21. $\underline{x}+4=$

2
22. $x y+3=$
23. $\frac{x+2}{y}=$
24. $\underline{2 x+8}=$

Write these in full:
25. $p^{3} q^{2}$
26. cd 3

Write in index form:
27. $p \times 7 p$
28. $3 b \times 2 b \times 10 b$

If $x=3$ and $y=5$
Work out these:
29. $5 x^{2}=$
30. $(5 x)^{2}=$
31. $5 y^{2}-3 x^{2}=$

Simplify these:
32. $k \times k^{2} \times k=$
33. $p \times 5 p^{2} \times 4 p^{3}=$
34. $\mathrm{p}^{8} \div \mathrm{p}^{6}=$
35. $\frac{16 \mathrm{~m}^{5}}{2 \mathrm{~m}^{3}}=$

Solve these equations:
36. $x+31=52$
37. $x-102=43$
38. $9 x=5 x+24$
39. $16 x=6 x+80$
40. $11 x-14=19$

Work out the missing angles:
41. $\mathrm{a}=$

42. $\mathrm{b}=$
43. $\mathrm{c}=$

44. $e=$

45. f $=$

46. $\mathrm{m}=$

True or False..?
47. Angles at a point add to 180°
48. Angles in a triangle add to 180°
49. Vertically opposite angles are equal
50. When a line is reflected it is smaller
51. The angle of rotation tells you the size of the image
52. In rotation there is only one invariant point
53. In reflection there is only one invariant point
54. In translation there are no invariant points
55. We use vectors to describe translations

PROBLEM SOLVING

56. Complete the next four in the sequence: $\mathrm{AL}, \mathrm{BM}, \mathrm{CN}, \mathrm{DO}$, \qquad , _ , __, _-
57. Write two numbers whose sum is 43 and whose difference is 9 .
58. In a rectangular field I put 12 fence posts on the long sides and there are 8 posts on the short sides. How many posts are used altogether?
59. How many times would I write a 5 if I number the pages in a book from 1 to 75 ?
60. I am thinking of a number. I multiply the number by 2 and then add 15 . The answer is 49. What was my original number?

MEASUREMENT

Change these lengths to cm :
61. 90 mm

45 mm
130 mm
84 mm
62. 2.0 m
1.5 m

85m
0.7 m
63. John swims 60 lengths of a swimming pool. The pool is 50 m long. How many km does he swim?

The scale of this smartphone picture is 1:2.

64. How wide is the real smartphone in mm ?
65. How long is this smartphone in mm?
66. A train takes 10 hours to travel 700 km . What is its average speed?
67. A speedboat travels for 4 hours at an average speed of $75 \mathrm{~km} / \mathrm{h}$. What distance does it travel?

What is the distance travelled in each of the following journeys?
68. 5 hours at an average speed of $40 \mathrm{~km} / \mathrm{h}$?
69. 2 days at an average speed of $20 \mathrm{~km} / \mathrm{h}$?
70. 15 minutes at an average speed of $200 \mathrm{~km} / \mathrm{h}$?

Choose from milligrams, grams, kilograms, tonnes. Which unit of mass would be most suitable for each of the following:
71. A sack of carrots?
72. Your mobile phone?
73. A Boeing 747 aircraft?
74. A rubber band?

Change these to tonnes:
75. 4000 kg

5420 kg
750kg
Change these to kg :
76. 3000 g

5400 g
750 g
At a wool auction, merino fleece sells for $\$ 2400$ per tonne. Calculate the cost of:
77. 1 kg

500kg
73 kg

Liquids

How many litres in:
78. 3000 mL

3250 mL
750 mL
How many millilitres in:
79. 6L
2.6L
0.25L
80. Soft drink cans hold 333 mL and plastic bottles hold 2 L . How many cans hold the same amount as a $2 L$ bottle?

STATISTICS

Construct a stem and leaf display for this set of data. These are golf scores for the Mahobe College Team.
$84,78,75,94,101,77,88,87,91,72,100,94,82,81,73,68,76,83,77,104,83$, 71, 82, 85, 74
(Your answer should include each of the following.)
81. Stem
82. Leaf 1
83. Leaf 2
84. Leaf 3
85. Leaf 4
86. Leaf 5

Construct a line graph.
During Cultural Week students were counted through the Mahobe College gates. Some come early, some late. Here is the set of data.

Time counted in at gate	Number of students
6.30 am	25
7.00 am	50
7.30 am	150
8.00am	350
8.30am	200
9.00am	50
9.30am	25

(Your answer should include each of the following.)
87. Title
88. Y-axis
89. X-axis
90. Y-axis label
91. X-axis label
92. Plotting data line

Construct a frequency table.
Over the last 45 days Sarah sent texts to her friends. She kept a daily record of the number she sent. This is her record:
$9,8,8,5,6,8,7,4,5,6,8,8,4,9,5$,
$5,6,8,3,7,7,8,5,6,4,8,7,7,7$,
$5,8,6,7,7,6,7,5,8,4,5,6,7,8,7$
(Your answer should include each of the following.)
93. Title
94. Number column
95. Tally column
96. Frequency column

Data set: $\quad 93,89,58,54,48,43,43,39,33$
97. What is the median?
98. What is the mode?
99. What is the mean?
100. What is the range?

Note to the student:

The end-of-term exam will be very similar to this paper.
If you study properly, it will be possible for you to get every question correct.
THIS IS YOUR GOAL!
Good luck!

NAME \qquad MATHS TEACHER \qquad

NUMBER		ALGEBRA	
1		21	
2		22	
3		23	
4		24	
5		25	
6		26	
7		27	
8		28	
9		29	
10		30	
11		31	
12		32	
13		33	
14		34	
15		35	
16		36	
17		37	
18		38	
19		39	
20		40	

The NZ Centre of Mathematics

NAME \qquad MATHS TEACHER

GEOMETRY		MEASUREMENT	
41		61	
42		62	
43		63	
44		64	
45		65	
46		66	
47		67	
48		68	
49		69	
50		70	
51		71	
52		72	
53		73	
54		74	
55		75	
56		76	
57		77	
58		78	
59		79	
60		80	

NAME \qquad MATHS TEACHER \qquad

The DS-742ET

Some advanced technology has gone into the Mahobe DS-742ET to make it one of the most powerful calculators available.

If you use anything else then good luck!

SPYDER

The Spyder calculator is another grand design from Mahobe Resources (NZ) Ltd. It is recommended by The New Zealand Centre of Mathematics. Purchase it direct from the Mahobe website and support more projects like this publication.
www.mahobe.co.nz.

YEAR 9 -TERM TWO EXAM

You will need a calculator, a pen and a ruler to do this exam.
DO NOT WRITE YOUR ANSWERS ON THIS PAPER.

NUMBER

1. Put in order, smallest to largest: $6.7062,6.795,6.686,6.806,6.815$
2. $289.5+47.68=$
3. $21.386-10.965=$

Sarah won a Mahobe College 800 m track race in a time of 5 minutes. She broke the previous record by 13.5 seconds.
4. What was the previous record?
5. How fast was Sarah running in km / h ?
6. $1.5 \times 1.3=$
$6 \times 0.7=$
$0.008 \times 0.4=$
$7.0 \times 0.9=$
7. $0.7 \times 10=$
$0.65 \times 100=$
$0.752 \times 1000=$
$0.009033 \times 1000=$

Money

Foreign exchange rates (Buy note as at June 29)
Australia 0.7712
United States 0.8057
Japan 65.19
How much foreign currency will you receive when you change:
8. NZ $\$ 800$ to US dollars?
9. $\mathrm{N} Z \$ 1500$ to Australian dollars?
10. $\mathrm{N} Z \$ 25,000$ to Japanese yen?
11. $80.9 \div 10=$
$0.178 \div 100=$
$0.08235 \div 0.25=$
$(53.15+0.0035) \div 0.025=$
12. Debbie buys 9 Cokes for $\$ 6.12$. What does one Coke cost?
13. If 10 students catch 25 fish in 10 days, how many fish will 20 students catch in 20 days?

Round your answer sensibly
14. A 65 m length of kite string is cut into 11 equal pieces. How long is each piece?

Integers

The temperature at midnight is $-11^{\circ} \mathrm{C}$. What will the new temperature be if...
15. ...it falls by $5^{\circ} \mathrm{C}$ at 1 am ?
16. ...it rises by $9^{\circ} \mathrm{C}$ at 2 am ?

Write in order from smallest to largest:
17. $-339,{ }^{+} 472,-832,-472,-369$

Calculate

18. ${ }^{+} 6+{ }^{-7}+{ }^{-} 4+{ }^{+} 14=$
19. $-8 \times+4=$
20. $4 \times{ }^{-1} \times{ }^{-7} \times{ }^{-1} 7=$

ALGEBRA

If $\boldsymbol{x}=4$ and $\boldsymbol{y}=10$
Find the value of:
21. $x+10=$

2
22. $x y-3=$
23. $x+26=$
24. $3 x+16=$ $\boldsymbol{x}+\boldsymbol{y}$

Write these in full:
25. $\mathrm{m}^{2} \mathrm{k}^{3}$
26. $a z^{4}$

Write in index form:
27. $5 \mathrm{~m} \times \mathrm{m}$
28. $4 b \times 3 b \times 20 b$

If $x=5$ and $y=8$
Work out these:
29. $5 x^{2}=$
30. $(5 x)^{2}=$
31. $5 y^{2}-3 x^{2}=$

Simplify these:
32. $m \times m^{3} \times m^{4}=$
33. $b \times 8 b^{5} \times 2 b^{6}=$
34. $s^{10} \div s^{6}=$
35. $\frac{32 m^{12}}{4 m^{6}}=$

Solve these equations:
36. $x+31=47$
37. $x-213=34$
38. $7 x=3 x+24$
39. $15 x=7 x+160$
40. $7 x-14=35$

GEOMETRY

Work out the missing angles:
41. $\mathrm{a}=$

42. $\mathrm{b}=$
43. $\mathrm{c}=$

44. $e=$

45. f $=$

46. $\mathrm{m}=$

True or False..?
47. Angles at a point add to 360°.
48. Angles in a triangle add to 280°.
49. Vertically opposite angles are equal.
50. When a line is reflected it is longer.
51. The angle of rotation tells you the size of the image.
52. In rotation there is sometimes only one invariant point.
53. In reflection there are many invariant points.
54. In translation there are no invariant points.
55. We use vectors to describe translations.

PROBLEM SOLVING

56. Complete the next four in the sequence $1,2,4,7,11$, \qquad , —, \qquad , —
57. I am a whole number less than 50 , when you add my digits you get $5, \mathrm{I}$ am an even number and I am divisible by 8 . What number am I ?
58. I buy 3 chocolate bars. The total value is $\$ 12$. Each chocolate bar is worth 50 cents more than the other. What does each chocolate bar cost?
59. How many times would I write the digit 3 if I wrote all the numbers from 1 to 200 ?
60. You multiply me by 6 , subtract 7 and the result is 59 . What number am I?

MEASUREMENT

Change these lengths to mm:
61. 9 cm

45 cm
130 cm
84 cm
62. 1.2 m
2.5 m
0.85m
0.07 m
63. John swims 50 lengths of a swimming pool. The pool is 50 m long. How many km does he swim?

The scale of this toy car is 1:4.

64. How wide is a wheel in cm ?
65. How long is this toy car in mm?
66. A train takes 8 hours to travel 400 km . What is its average speed?
67. A speedboat travels for $51 / 2$ hours at an average speed of $70 \mathrm{~km} / \mathrm{h}$. What distance does it travel?

What is the distance travelled in each of the following journeys?
68. 5 hours at an average speed of $40 \mathrm{~km} / \mathrm{h}$.
69. $41 / 2$ days at an average speed of $40 \mathrm{~km} / \mathrm{h}$.
70. 15 minutes at an average speed of $850 \mathrm{~km} / \mathrm{h}$.

Choose from milligrams, grams, kilograms, tonnes. Which unit of mass would be most suitable for each of the following:
71. A pack of cards?
72. Your school bag?
73. A logging truck?
74. An eyelash?

Change these to tonnes:
75. 32000 kg
154.2 kg

950kg
Change these to kg :
76. 3000 g

6455 g
850 g
At a wool auction, merino fleece sells for $\$ 1800$ per tonne. Calculate the cost of:
77. 1 kg

300kg
7.3 kg

Liquids

How many litres in:
78. 3000 mL
32.5 mL

750mL
How many millilitres in:
79. 3 L
1.16L
0.25L
80. Soft drink cans hold 333 mL and plastic bottles hold 2 L . How many cans hold the same amount as $4 \times 2 L$ bottles?

STATISTICS

Construct a stem and leaf display for this set of data. These are results for the Mahobe College Clay Target Team.
$74,68,65,84,91,67,78,77,81,69,90,84,72,71,63,58,66,73,67,94,73,61$,
72, 75, 64
(Your answer should include each of the following.)
81. Stem
82. Leaf 1
83. Leaf 2
84. Leaf 3
85. Leaf 4
86. Leaf 5

Construct a line graph.
During Fundraising Week, students collected money for the Christchurch Emergency Fund. The money was counted each day and here is the set of data.

Day	Dollars (\$)
Monday	25
Tuesday	50
Wednesday	150
Thursday	350
Friday	200
Saturday	50
Sunday	25

(Your answer should include each of the following.)
87. Title
88. Y-axis
89. X-axis
90. Y-axis label
91. X-axis label
92. Plotting data line

Construct a frequency table.
Over the last 45 days Michael delivered parcels after school. He kept a daily record of the number of parcels he delivered. This is his record:
$7,6,6,3,4,6,5,2,3,4,6,6,2,7,3$,
$3,4,6,1,5,5,6,3,4,2,6,5,5,5$,
$3,6,4,5,5,4,5,3,6,2,3,4,5,6,5$
(Your answer should include each of the following.)
93. Title
94. Number column
95. Tally column
96. Frequency column

Data set: $\quad 13,19,23,23,28,34,38,69,73$
97. What is the median?
98. What is the mode?
99. What is the mean?
100. What is the range?

NAME \qquad MATHS TEACHER \qquad

NUMBER		ALGEBRA	
1		21	
2		22	
3		23	
4		24	
5		25	
6		26	
7		27	
8		28	
9		29	
10		30	
11		31	
12		32	
13		33	
14		34	
15		35	
16		36	
17		37	
18		38	
19		39	
20		40	

The NZ Centre of Mathematics

NAME \qquad MATHS TEACHER

GEOMETRY		MEASUREMENT	
41		61	
42		62	
43		63	
44		64	
45		65	
46		66	
47		67	
48		68	
49		69	
50		70	
51		71	
52		72	
53		73	
54		74	
55		75	
56		76	
57		77	
58		78	
59		79	
60		80	

NAME \qquad MATHS TEACHER \qquad

SPYDER

The Spyder calculator is another grand design from Mahobe Resources (NZ) Ltd. It is recommended by The New Zealand Centre of Mathematics. Purchase it direct from the Mahobe website and support more projects like this publication.

The DS-742ET

Did you know that Mahobe added equation solving to make this an even more powerful calculator?

YEAR 9 - TERM THREE PRACTICE EXAM

You will need a calculator, a pen and a ruler to do this exam.
DO NOT WRITE YOUR ANSWERS ON THIS PAPER.
NUMBER

1. List the first 4 multiples of 19.
2. What is the Lowest Common Multiple of 15 and 20 ?
3. List the 4 common factors of 30 and 50 .
4. What are the prime factors of 72 ?
5. Write this in power form: $7 \times 7 \times 7 \times 7 \times 7$
6. Write in full: 11^{5}
7. What is the base of: 15^{4} ?
8. $(0.2)^{4}=$
9. $(-5)^{4}=$
10. Calculate the area of this square:

11. Calculate the volume of this cube:

12. Calculate the length of each side of this square:
Area $=676 \mathrm{~mm}^{2}$

Carpet squares. A square classroom has 81 carpet squares laid on the floor.
13. How many carpet squares touch the walls?
14. How many carpet squares touch only one wall?

The product of 8 and 3 is added to 4
15. Write this statement with brackets.
16. Work out the answer for this statement.

Fractions

17. There are 15 students in the school equestrian team. 3 students are in Year 13. What fraction is not in Year 13?

Angus kept a record of the weather at 9am at school each day for a whole week:

	Mon	Tues	Wed	Thurs	Fri	Sat	Sun
Sky	Snow	Hail	Cloudy	Fine	Fine	Showers	Showers
Wind	Windy	Windy	Calm	Calm	Windy	Windy	Calm
Temperature $\left({ }^{\circ} \mathrm{C}\right)$	4	6	9	12	10	7	6

18. What fraction of the days was fine?
19. What fraction of the days had snow?
20. What fraction of the days had temperatures lower than $10^{\circ} \mathrm{C}$?

ALGEBRA

Solve for \boldsymbol{x} :
21. $x+10=53$
22. $x-100=61$
23. $\underline{x}=10$

3
24. $6 x=24$
25. $2 x-1=7$
26. $6 x+8=x+23$
27. $-5 x+6=21$

Fred is saving money for a $\$ 200$ rugby jersey. So far, he has saved \boldsymbol{x} dollars. If he saves another $\$ 112$ he will have enough money.
28. Write an equation for this information.
29. Solve the equation to see how much he has saved.
30. The cost of a torch with batteries is $\$ 12$. The torch costs $\$ 8$ more than the batteries. How much do the batteries cost?

Write an equation for the following information:
Do not solve!
31. I think of a number and add 11 to it. This gives a result of 17 .

Write this next equation and then solve for \boldsymbol{x} :
32. I multiply a number by 2 and then add 7 . This is the same as adding 9 to the number.

Peter is making hotdogs for his birthday party. He multiplies the number of guests by 3, and then subtracts 7 . He makes 59 hotdogs. How many guests is he expecting?
33. Write an equation for the above information.
34. Now solve that equation.

Expand these brackets:
35. $5(p+q)=$
36. $-4(p+q)=$
37. $8(\mathrm{k}-2)=$
38. $m(p+q)=$
39. $a(b+c-d)=$
40. $5 y(x+z)=$

GEOMETRY

41. Write down the vector for:

42. Draw the arrow for the vector: \square
43. Write down the vector for this translation:

True or False

44. Parallel lines never meet.
45. Parallel lines are sometimes the same distance apart.
46. A line that crosses a pair of parallel lines is called a transverse.
47. Corresponding angles always add up to 180°.
48. Cointerior angles always add up to 180°.
49. Bearings are angles which are measured clockwise from North.
50. Cartography means to draw carts.

Work out the size of the unknown marked angles:
51.

52.

53.

54. $e=$

55. $f=$

Each box should have a compass direction and a bearing:

56. $\mathrm{A}=$
57. $\mathrm{B}=$
58. $\mathrm{C}=$
59. $\mathrm{D}=$
60. Which of these is a bearing?
a) 50°
b) NW
c) 450°
d) 120°

MEASUREMENT

Measure and calculate the areas of these shapes (Questions 61-70).
61. Rectangle

The NZ Centre of Mathematics
62. Square

63.

64.

65.

66.

67.

68.

69.

70.

Use Pick's rule - or your own rule - to work out the area of these 3 shapes:
71.

72.

Pick's Rule: \quad Area of shape $=\boldsymbol{n}-1+\frac{\boldsymbol{p}}{2}$ The rule just involves counting dots.

We use \boldsymbol{n} for the number of dots inside the shape. We use \boldsymbol{p} for the number of dots on the perimeter.
73.

Hectares

74. $4 h a=\ldots ? \ldots \mathrm{~m}^{2}$
75. $48500 \mathrm{~m}^{2}=\ldots ? \ldots$ ha
76. The land next to the school is being subdivided. It has an area of 7.4ha. Each section will be about $899 \mathrm{~m}^{2}$. Approximately how many sections will there be?

Calculate the perimeter of these shapes:
77.

78.

79.

20m

80. Mahobe College has two rugby fields, one soccer field and one hockey field. The Council operates eight sports fields next door to the College. Each sport field is $50 \mathrm{~m} \times 100 \mathrm{~m}$. How many hectares are there in total for all these fields?

STATISTICS

[35, 37, 37, 40, 42, 45, 45, 45, 50]
81. What is the median?
82. What is the mode?
83. What is the mean?
84. What is the range?

This frequency table shows the speeding tickets issued yesterday.

Exceeding limit by:	Frequency
10 kph	6
20 kph	16
30 kph	8
40 kph	6
50 kph	3
60 kph	1
70 kph	0

85. How many exceeded the limit by 40 kph ?
86. What is the frequency of 50 kph ?
87. What was the highest speed ticketed?
88. How many drivers exceeded the limit by at least 40kph?
89. How many drivers received a ticket for speeding?
90. What is the percentage of drivers below 30kph?

Limerick

There once was a girl from Great Britain
Who carelessly sat on her kitten
Imagine her surprise
And the look in her eyes
When on the behind she was bitten!

Construct a frequency table for the appearance of these 10 letters in this limerick:
91. $\mathrm{z}=$
92. $t=$
93. $\mathrm{n}=$
94. $\mathrm{e}=$
95. $\mathrm{a}=$
96. $r=$
97. $\mathrm{s}=$
98. I =
99. $\mathrm{i}=$
100. $\mathrm{w}=$

Note to the student:
The end of term exam will be very similar to this paper.
If you study properly, it will be possible for you to get every question correct.
THIS IS YOUR GOAL!
Good luck!

The NZ Centre of Mathematics

NAME \qquad MATHS TEACHER \qquad

NUMBER		ALGEBRA	
1		21	
2		22	
3		23	
4		24	
5		25	
6		26	
7		27	
8		28	
9		29	
10		30	
11		31	
12		32	
13		33	
14		34	
15		35	
16		36	
17		37	
18		38	
19		39	
20		40	

[^0]The NZ Centre of Mathematics

NAME \qquad MATHS TEACHER \qquad

GEOMETRY		MEASUREMENT	
41		61	
42		62	
43		63	
44		64	
45		65	
46		66	
47		67	
48		68	
49		69	
50		70	
51		71	
52		72	
53		73	
54		74	
55		75	
56		76	
57		77	
58		78	
59		79	
60		80	

[^1]The NZ Centre of Mathematics

NAME \qquad MATHS TEACHER \qquad

STATISTICS		
81		
82		
83		
84		
85		
86		
87		
88		
89		
90		
91		
92		
93		
94		
95		
96		
97		
98		
99		
100		

Yr 9 Maths Term 3 Practice Exam

The DS-742ET

Mahobe have added some amazing technology into their new eTool advanced scientific calculator.

- Equation solving.
- Enhanced statistics.
- Improved powers and fraction display.

This calculator is designed to handle even the toughest assignments. If you use any other calculator then good luck. With a Mahobe Resource you can have an added confidence that the answer will be correct.

YEAR 9 EXAM -TERM THREE

You will need a calculator, a pen and a ruler to do this exam.
DO NOT WRITE YOUR ANSWERS ON THIS PAPER.

NUMBER

1. List the first 4 multiples of 91
2. What is the Lowest Common Multiple of 20 and 25 ?
3. List the 4 common factors of 30 and 50
4. What are the prime factors of 30 ?
5. Write this in power form: $9 \times 9 \times 9 \times 9 \times 9 \times 9$
6. Write in full: 13^{6}
7. What is the base of: 13^{3} ?
8. $(0.3)^{3}=$
9. $(-6)^{3}=$
10. Calculate the area of this square:
27.2 mm
11. Calculate the volume of this cube:

12. Calculate the length of each side of this square:
Area $=529 \mathrm{~mm}^{2}$

Carpet squares. A square classroom has 100 carpet squares laid on the floor.
13. How many carpet squares touch the walls?
14. How many carpet squares touch only one wall?

The product of 8 and 4 is subtracted from 56
15. Write this statement with brackets
16. Work out the answer for this statement

Fractions

17. There are 14 students in the school orienteering team. 4 students are in Year 13. What fraction of students is not in Year 13?

Angus kept a record of the weather at 9am at school each day for a whole week:

	Mon	Tues	Wed	Thurs	Fri	Sat	Sun
Sky	Snow	Hail	Cloudy	Fine	Fine	Snow	Showers
Wind	Windy	Windy	Calm	Calm	Windy	Windy	Calm
Temperature $\left({ }^{\circ} \mathrm{C}\right)$	4	6	9	12	10	7	11

18. What fraction of the days was fine?
19. What fraction of the days had snow?
20. What fraction of the days had temperatures lower than $10^{\circ} \mathrm{C}$?

ALGEBRA

Solve for \boldsymbol{x}
21. $x+10=71$
22. $x-50=61$
23. $\underline{x}=31$

3
24. $6 x=72$
25. $2 x-1=33$
26. $6 x+8=x+63$
27. $-5 x+21=1$

Fred is saving money for a $\$ 275$ rugby jersey. So far, he has saved \boldsymbol{x} dollars. If he saves another $\$ 142$ he will have enough money.
28. Write an equation for this information
29. Solve the equation to see how much he has saved.
30. The cost of a torch with batteries is $\$ 48$. The torch costs $\$ 10$ more than the batteries. How much do the batteries cost?

Write an equation for the following information:
Do not solve!
31. I think of a number and subtract 36 from it. This gives a result of 27 .

Write this next equation and then solve for \boldsymbol{x}
32. I multiply a number by 3 and then add 13 . This is the same as adding 33 to the number.

Peter is making hotdogs for his birthday party. He multiplies the number of guests by 4 , and then subtracts 28 . He makes 100 hotdogs. How many guests is he expecting?
33. Write an equation for the above information.
34. Now solve that equation.

Expand these brackets:
35. $6(p+q)=$
36. $-3(p-q)=$
37. $7(k-2)=$
38. $t(r+s)=$
39. $d(e+f-k)=$
40. $6 a(b+c)=$

GEOMETRY

41. Write down the vector for:

42. Draw the arrow for the vector:

43. Write down the vector for this translation:

True or False

44. Parallel lines never meet
45. Parallel lines are sometimes the same distance apart
46. A line that crosses a pair of parallel lines is called a transverse
47. Corresponding angles sometimes add up to 180°
48. Cointerior angles sometimes add up to 180°
49. Bearings are angles which are measured clockwise from South
50. Cartography means to draw maps

Work out the size of the unknown marked angles:
51.

52.

53.

54. $e=$

55. $f=$

What compass directions and bearings are missing?

56. $\mathrm{A}=$
57. $\mathrm{B}=$
58. $\mathrm{C}=$
59. $\mathrm{D}=$
60. Which three of these is a bearing?
a) 150°
b) $S E$
c) 380°
d) 20°

YEAR 9 EXAM -TERM THREE

You will need a calculator, a pen and a ruler to do this exam. DO NOT WRITE YOUR ANSWERS ON THIS PAPER.

MEASUREMENT

Measure and calculate the areas of these shapes (Questions 61-70)
61. Rectangle

62. Square

63.

64.

65.

66.

67.

68.

69.

70.

Pick's Rule: \quad Area of shape $=\boldsymbol{n}-1+\frac{\boldsymbol{p}}{2}$

The rule just involves counting dots.
We use \boldsymbol{n} for the number of dots inside the shape. We use \boldsymbol{p} for the number of dots on the perimeter.

Use Pick's rule - or your own rule - to work out the area of these 3 shapes:
71.

72.

73.

Hectares

74. $8 \mathrm{ha}=\ldots$.... m^{2}
75. $68,000 \mathrm{~m}^{2}=\ldots ? \ldots$ ha
76. The land next to the school is being subdivided. It has an area of 9.5 ha. Each section will be about $900 \mathrm{~m}^{2}$. Approximately how many sections will there be?

Calculate the perimeter of these shapes:
77.

78.

79.

24m

80. Mahobe College has three rugby fields, one soccer field and one hockey field. The Council operates twelve sports fields next door to the College. Each field is $50 \mathrm{~m} \times 100 \mathrm{~m}$. How many hectares is that?

STATISTICS

$41,43,43,46,48,51,51,51,56$

81. What is the median?
82. What is the mode?
83. What is the mean?
84. What is the range?

This frequency table shows the speeding tickets issued yesterday.

Exceeding limit by:	Frequency
10 kph	6
20 kph	16
30 kph	8
40 kph	6
50 kph	3
60 kph	1
70 kph	0

85. How many exceeded the limit by less than 40 kph ?
86. What is the frequency of 20 kph ?
87. What was the highest speed ticketed?
88. How many drivers exceeded the limit by at least 30 kph ?
89. How many drivers received a ticket for speeding?
90. What is the percentage of drivers above 30 kph ?

Limerick

There was an old man from Darjeeling
Who rode on the night train to Ealing
It said on the door:
"Don't spit on the floor"
So he carefully spat on the ceiling

Construct a frequency table for the appearance of these 10 letters in this limerick:
91. $\mathrm{z}=$
92. $t=$
93. $\mathrm{n}=$
94. $\mathrm{e}=$
95. $\mathrm{a}=$
96. $r=$
97. $\mathrm{s}=$
98. $\mathrm{I}=$
99. $\mathrm{y}=$
100. $\mathrm{w}=$

NAME \qquad MATHS TEACHER \qquad

NUMBER		ALGEBRA	
1		21	
2		22	
3		23	
4		24	
5		25	
6		26	
7		27	
8		28	
9		29	
10		30	
11		31	
12		32	
13		33	
14		34	
15		35	
16		36	
17		37	
18		38	
19		39	
20		40	

[^2]The NZ Centre of Mathematics

NAME
MATHS TEACHER \qquad

[^3]The NZ Centre of Mathematics

NAME \qquad MATHS TEACHER \qquad

MEASUREMENT		STATISTICS			
61		81			
62		82			
63		83			
64		84			
65		85			
66		86			
67		87			
68		88			
69		89			
70		90			
71		91	Letter	Tally	Frequency
72		92			
73		93			
74		94			
75		95			
76		96			
77		97			
78		98			
79		99			
80		100			

[^4]

When it comes to buying a reliable calculator don't rely on chance. Only the Mahobe SPYDER calculator is recommended by The New Zealand Centre of Mathematics. Purchase it direct from the Mahobe website:

NAME: \qquad
\qquad

Year 9 Mathematics

You should answer ALL parts of ALL questions in this exam paper.
You should show ALL working.
Check that this booklet has the pages in the correct order and that none of these pages is blank.
YOU MUST HAND THIS BOOKLET TO YOUR TEACHER AT THE END OF THE ALLOTTED TIME.

For Assessor's use only	Achievement Criteria	
Achievement	Achievement with Merit	Achievement with Excellence
Apply algebraic procedures in solving problems.	Apply algebraic procedures involving relational thinking, in solving problems.	Apply algebraic procedures involving extended abstract thinking, in solving problems.
Overall Level of Performance		

SECTION 1: Number problems in context

You are advised to spend 20 minutes answering the questions in this section.

QUESTION ONE

Jason buys a tray of peaches. He gives $1 / 4$ of the tray to Mrs Jones and takes $1 / 3$ of the tray to school. What fraction does he leave at home?
\qquad
\qquad
\qquad
\qquad

QUESTION TWO

The school clay target team travelled to a competition in Sydney. The cost for plane tickets and accommodation was $\$ 4260$. The plane ticke ts cost $\$ 2200$. What percentage of the cost was for accommodation?
\qquad
\qquad
\qquad

QUESTION THREE

A "C" category ticket to the Rugby World Cup semi-finals costs $\$ 750$.
(i) That same ticket would have cost 35% less at the quarter-finals. How much would that have been?
\qquad
\qquad
(ii) But for the finals, this same ticket is increased by 55%. How much will the ticket cost for the finals?

QUESTION FOUR

Two different car dealers are selling the same model car.
Honest Harry is advertising his car as " $\$ 18,000$ with 35% discount".
Gentleman Jim advertises his car as " $\$ 15,000$ with 20% discount".

(i) Which car is cheaper?
\qquad
\qquad
(ii) By how much is it cheaper?

QUESTION FIVE

Mars orbits the sun at an average distance of 227,939,100 km.
Earth orbits the sun at an average distance of $149,597,888 \mathrm{~km}$.
An astronomical unit (AU) is the distance from Earth to the Sun.
Light and radio waves travel at 299,792, $458 \mathrm{~m} / \mathrm{s}$.
(i) How far is Mars from Earth?
(ii) How many AUs from Mars to the Sun?
(iii) How long would it take a particle of light to travel from Earth to Mars and back?

QUESTION SIX

Money is exchanged at three different banks.
Jason changed his NZ\$210 and got US\$175.
Darts changed her NZ\$450 and got US\$369.
Pele changed his NZ\$65 and got US\$54.
(i) The exchange rate at Jason's bank was 0.8333 . Write down the sum that shows how this could be calculated to give Jason his US\$175.
(ii) Who got the best exchange rate? Explain and show your working.
\qquad
\qquad
\qquad
\qquad

SECTION 2: Apply Algebraic Procedures in Solving Problems

You are advised to spend 30 minutes answering the questions in this section.

QUESTION ONE

(a) Solve these equations:
(i) $x+13=46$
(ii) $x^{2}=81$
(b) Solve $5 x-10=3 x+12$
\qquad
\qquad
\qquad
\qquad
(c) (i) Factorise $4 x+4 y$
\qquad
\qquad
\qquad
(ii) Simplify $4 a+3 b-2 a+b$
(d) Show that $\sqrt{x^{4}}=x^{2}$
\qquad
\qquad
\qquad
\qquad

QUESTION TWO

(a) Michelle found the following formula:

$$
A=b h
$$

(i) If $b=8$ and $h=20$, find A.
\qquad
\qquad
$A=$
(ii) Michelle now wants to use the same formula to find h in a different situation. She knows that $A=30$ and $b=6$.
\qquad
\qquad
\qquad
$\boldsymbol{h}=$
(b) (i) Expand: $2(x+3)$
\qquad
\qquad
\qquad
\qquad
(ii) Solve: $2(3-x)=-8$
\qquad
\qquad
(c) Anaru has to mow the back lawn. This is what it looks like.

(i) Write an equation for the perimeter of the lawn.
\qquad
\qquad
\qquad
(ii) Write an equation for the area of the lawn.
\qquad
\qquad
\qquad
(iii) What is the value of x ?
\qquad
\qquad
\qquad $x=$

QUESTION THREE

(a) Solve: $3(x+4)=0$
\qquad
\qquad
$X=$
(b) Simplify: $3 x^{2}+2 x+4 x^{2}-x$
\qquad
\qquad
\qquad
(c) Jacob spent $\$ 45$ buying some CDs in a sale. He bought PlayStation CDs and X-Box CDs.
(i) Jacob writes an equation for the amount he spent as: $P+X=45$

Explain the terms of the equation.
\qquad
\qquad
\qquad
(ii) The X-Box CDs cost $\$ 15$ more than the PlayStation CDs.

How much did the PlayStation CDs cost?
\qquad
\qquad
\qquad

Extra paper for working out your answers.

SECTION 3: Apply geometric reasoning in solving problems

You are advised to spend 30 minutes answering the questions in this section.

QUESTION ONE

ORIENTEERING COURSE

You have to draw a map for orienteers to follow.
Each square on your map grid is counted as 100 m .
There are 12 "legs".
At the end of each leg you must draw a symbol - taken from the set above.

Instructions on how to draw the map:
1 From the START move 200 m on a bearing of 000° - draw a square
2 Move 600 m on a bearing of 090° - draw a horizontal cylinder
3 Move 500 m on a bearing of 000° - draw a circle
4 Move 400 m on a bearing of 270° - draw a trapezium
5 Move 200 m on a bearing of 315° - draw a diamond
6 Move 300 m on a bearing of 045° - draw a right-angled triangle
7 Move 400 m on a bearing of 090° - draw a vertical cylinder
8 Move 400 m on a bearing of 315° - draw a hexagon
9 Move 500 m on a bearing of 000° - draw an octagon
10 Move 400 m on a bearing of 225° - draw an ellipse
11 Move 600 m on a bearing of 180° - draw a parallelogram
12 Move 300 m on a bearing of 270° - draw a cube

QUESTION TWO

(i) $\mathrm{t}=$
(ii) $\mathrm{a}=$
(iii) $\mathrm{s}=$

QUESTION THREE

Here are two regular hexagons:
[CLUE: The exterior angles of any polygon add up to 360°.]

(i) Using your knowledge of hexagons, work out the size of angle "e"
\qquad
\qquad
(ii) Write an equation to show why "m" equals 60°
\qquad
\qquad
(iii) Each side of a hexagon makes an angle of 60° at the centre. How many sides would a polygon have if the angle at the centre was 18° ?
\qquad
\qquad

SECTION 4: Solve problems involving measurement

You are advised to spend 20 minutes answering the questions in this section.

QUESTION ONE

(i) How long is this goldfish?
\qquad
\qquad
(ii) How "tall" is it?
(iii) Rare goldfish are often sold by size. This one costs $\$ 5.00$ per $8 \mathrm{~cm}^{2}$. Estimate how much will it sell for.
\qquad
\qquad
\qquad

QUESTION TWO

[Note: The distance by road from Ramarama to Bombay is approximately 5 km .]
(i) What is the flying distance from Waiuku to Awhitu?
\qquad
\qquad
\qquad
(ii) Estimate the distance by road from Manurewa to Maramarua.
\qquad
\qquad
\qquad
\qquad
(iii) Estimate the area of the Hunua Ranges in square kilometres. Show your calculations.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

QUESTION THREE

This is a really bad drawing of the Mahobe swimming pool. It is 30 m long, 8 m wide and 1 m at the shallow end. The bottom of the pool slopes down to 3 m .

(i) What are the measurements marked h, a, t, s on this drawing?

$\mathrm{h}=$	$\mathrm{a}=$
$\mathrm{t}=$	$\mathrm{s}=$

(ii) Calculate the area of the cross-section of the pool.
\qquad
\qquad
\qquad
(iii) Watercare Ltd sells water for $\$ 1.64 / \mathrm{m}^{3}$. How much does the Council have to pay to fill the pool?
\qquad
\qquad
\qquad
\qquad

SECTION 5: Sketch and interpret graphs

You are advised to spend 20 minutes answering the questions in this section.

QUESTION ONE

Mahobe College students have been fundraising for Canteen. The Stem and Leaf graph shows the distribution of how much money was collected by the students of one form class.
(i) How many students raised more than $\$ 46.00$?
\qquad

Stem	Leaf
1	1468
2	26899
3	0137
4	5669
5	122345
6	12667
7	0468

(ii) How many raised between $\$ 29.00$ and $\$ 51.00$?
\qquad
\qquad
(iii) How much did the top quarter of students raise?
\qquad
\qquad

QUESTION TWO

Waikato Rainfall Graph

(i) Which was the wettest month of the year?
(ii) Estimate the total rainfall for spring.

QUESTION THREE

(i) In which month does Tauranga have its highest sunshine hours?

New Zealand record: most sunshine hours in one year - Nelson (1931): 2 '711 hours. New Zealand record: lowest sunshine hours in one year - Invercargill (1983): 1'333 hours.
(ii) Would the combined sunshine hours of Tauranga and Hokitika be the same as that for Nelson and Invercargill? What do you think? Show any working.
(iii) Explain why the graph is a V-shape.
\qquad FIRST NAME: \qquad

FORM CLASS: \qquad TEACHER:

Year 9 Mathematics

Final Exam

You should answer ALL parts of ALL questions in this exam paper.
You should show ALL working.
Check that this booklet has the pages in the correct order and that none of these pages is blank.

YOU MUST HAND THIS BOOKLET TO YOUR TEACHER AT THE END OF THE ALLOTTED TIME.

Number	Algebra	Geometry	Measurement	Statistics
\square	\square	\square	\square	\square

For Assessor's use only	Achievement Criteria			
Achievement	Achievement with Merit	Achievement with Excellence		
Apply procedures in solving problems.	Apply procedures involving relational thinking, in solving problems.	Apply procedures involving extended abstract thinking, in solving problems.		
Overall Level of Performance				\square

SECTION 1: Number problems in context

You are advised to spend 20 minutes answering the questions in this section.

QUESTION ONE

Amelia buys a box of chocolates. She gives $1 / 3$ of the box to Tracey and takes $1 / 2$ of the box to school. What fraction of her chocolates does she leave at home?
\qquad
\qquad
\qquad

QUESTION TWO

The school table tennis team tr avelled to a competition in Hamilton. The cost for bus tickets and accommodation was $\$ 250$. The bus tickets cost $\$ 140$. What percentage of the cost was for accommodation?
\qquad
\qquad
\qquad

QUESTION THREE

A "G" category ticket to the Rugby World Cup semi-finals cost $\$ 85$.
(i) That same ticket would have cost 45% less at the quarter-finals. How much would that have been?
(ii) But, for the finals, this same ticket is increased by 55%. How much will the ticket cost for the finals?

QUESTION FOUR

Two different car dealers are selling the same model car.
Bono Bayliss is advertising his car as " $\$ 18,000$ with 30% discount".
Gerard Jones advertises his car as " $\$ 15,000$ with 15% discount".

(i) Which car is cheaper?
\qquad
\qquad
(ii) By how much is it cheaper?
\qquad
\qquad

QUESTION FIVE

Saturn orbits the sun at an average distance of $1,429,400,000 \mathrm{~km}$.
Earth orbits the sun at an average distance of $149,597,888 \mathrm{~km}$.
An astronomical unit (AU) is the distance from Earth to the Sun.
Light and radio waves travel at 299,792,458 m/s.
(i) How far is Saturn from Earth?
(ii) How many AUs from Saturn to the Sun?
(iii) How long would it take a particle of light to travel from Earth to Saturn and back? (Give the time in minutes)

QUESTION SIX

Money is exchanged at three different banks..
Jacke changed his NZ\$210 and got A\$175.
Angie changed her NZ\$550 and got $\mathrm{A} \$ 440$.
Pauli changed his NZ\$165 and got $\mathrm{A} \$ 128.70$.
(i) The exchange rate at Jacke's bank was 0.8333 . Write down the sum that shows how this could be calculated to give Jacke his US\$175.
(ii) Who got the best exchange rate? Explain and show your working.
\qquad
\qquad
\qquad
\qquad

SECTION 2: Apply Algebraic Procedures in Solving Problems

You are advised to spend 30 minutes answering the questions in this section.

QUESTION ONE

(a) Solve these equations:
(i) $x+15=35$
\qquad
\qquad
\qquad
(ii) $x^{2}=6.25$
\qquad
\qquad
(b) Solve $6 x-20=4 x+14$
\qquad
\qquad
\qquad
\qquad
$x=$
(c) (i) Factorise $8 m+8 y$
\qquad
\qquad
\qquad
(ii) Simplify $7 a+5 b-2 a+b$
(d) Show that $\sqrt{y^{6}}=y^{3}$
\qquad
\qquad
\qquad
\qquad

QUESTION TWO

(a) Michelle found the following formula for the area of a rectangle:

$$
A=b h
$$

(i) If $b=12$ and $h=20$, find A.
\qquad
\qquad
(ii) Michelle now wants to use the same formula to find h in a different situation. She knows that $A=270$ and $b=15$.
\qquad
\qquad
\qquad
\qquad
(b) (i) Expand: $4(x+5)$
\qquad
\qquad
\qquad
\qquad
(ii) Solve: $4(3-x)=-8$
\qquad
\qquad
\qquad
$x=$
(c) Bharat has to mow the back lawn. This is what it looks like.

(i) Write an equation for the perimeter of the lawn.
\qquad
\qquad
\qquad
(ii) Write an equation for the area of the lawn.
\qquad
\qquad
(iii) What is the value of x ?
\qquad
\qquad
\qquad $x=$

QUESTION THREE

(a) Solve: $3(x+8)=0$
\qquad
\qquad
\qquad
(b) Simplify: $2 x+4 x^{2}-x+3 x^{2}$
\qquad
\qquad
\qquad
(c) Jacob spent $\$ 60$ buying some magazines in a sale. He bought Rugby News and Squash NZ.
(i) Jacob writes an equation for the amount he spent as: $R+S=60$ Explain the terms of the equation.
\qquad
\qquad
\qquad
(ii) The Rugby News cost $\$ 15$ more than the Squash NZ magazines. How much did the Rugby News cost?
\qquad
\qquad
\qquad

SECTION 3: Apply geometric reasoning in solving problems

You are advised to spend 30 minutes answering the questions in this section.

QUESTION ONE

ORIENTEERING COURSE

You have to draw a map for orienteers to follow.
Each square on your map grid is counted as 100 m .
There are 12 "legs".
At the end of each leg you must draw a symbol - taken from the set above.

Instructions on how to draw the map:
1 From the START move 200 m on a bearing of 000° - draw a circle
2 Move 600 m on a bearing of 090° - draw a square
3 Move 500 m on a bearing of 000° - draw a cylinder
4 Move 400 m on a bearing of 270° - draw a triangle
5 Move 200 m on a bearing of 315° - draw a semi-circle
6 Move 300 m on a bearing of 045° - draw a right-angled triangle
7 Move 400 m on a bearing of 090° - draw a vertical cylinder
8 Move 400 m on a bearing of 315° - draw a octagon
9 Move 500 m on a bearing of 000° - draw an hexagon
10 Move 400 m on a bearing of 225° - draw a parallelogram
11 Move 600 m on a bearing of 180° - draw a ellipse
12 Move 300 m on a bearing of 270° - draw a horizontal cylinder

QUESTION TWO

(i) $t=$
(ii) $\mathrm{a}=$
(iii) $\mathrm{s}=$

QUESTION THREE

Here are two regular hexagons:
[CLUE: The exterior angles of any polygon add up to 360°.]

(i) Using your knowledge of hexagons, work out the size of angle "e"
\qquad
\qquad
(ii) Write an equation to show why "m" equals 60°
\qquad
\qquad
\qquad
(iii) Each side of a hexagon makes an angle of 60° at the centre. How many sides would a polygon have if the angle at the centre was 30° ?

SECTION 4: Solve problems involving measurement

You are advised to spend 20 minutes answering the questions in this section.

QUESTION ONE

(i) Estimate the height of the tail of this goldfish at the widest point?
(ii) The dorsal fin runs along the top of a fish. Estimate the length of the dorsal fin.
\qquad
\qquad
(iii) Rare goldfish are often sold by size. This one costs $\$ 45.00$ per $5 \mathrm{~cm}^{2}$. Estimate how much will it would cost you to buy it.

QUESTION TWO

This is a really bad drawing of the Waiiti swimming pool. It is 30 m long, 8 m wide and 1 m at the shallow end. The bottom of the pool slopes down to 3 m .

(i) What are the measurements marked h, a, t, s on this drawing?
\qquad
(ii) Calculate the area of the cross-section of the pool.
\qquad
\qquad
\qquad
(iii) Watercare Ltd sells water for $\$ 1.64 / \mathrm{m}^{3}$. How much does the Council have to pay to fill the pool?
\qquad
\qquad
\qquad

QUESTION THREE

(Refer to the map following these questions.)
(i) In this old map the distances are given in miles rather than in kilometres. What is the flying distance from Waiuku to Clark's Beach in miles?
\qquad
\qquad
\qquad
(ii) Estimate the distance by road in miles from Tuakau to Drury.
\qquad
\qquad
\qquad
\qquad
(iii) This map was printed before 1967, when New Zealand moved to decimal currency and the metric system. Which are the largest population centres (towns) at the time this map was printed? How can you tell this?

SECTION 5: Sketch and interpret graphs

You are advised to spend 20 minutes answering the questions in this section.

QUESTION ONE

Mahobe College students have been fundraising for the Canterbury Earthquake Appeal. The Stem and Leaf graph shows the distribution of how much money was collected by the different form classes in the school.
(i) How many forms raised more than $\$ 30.00$?

| Stem | Leaf |
| ---: | :--- | :--- |
| 1 | 14468 |
| 2 | 268999 |
| 3 | 0137 |
| 4 | 5669 |
| 5 | 122345 |
| 6 | 12667 |
| 7 | 0468 |

(ii) How many raised between $\$ 20.00$ and $\$ 50.00$?
(iii) How much did the least successful quarter of students raise?
\qquad
\qquad

QUESTION TWO

Waikato Rainfall Graph
(i) Which was the driest month of the year?
(ii) Estimate the total rainfall for summer.

QUESTION THREE

(i) In which month does Hokitika have its lowest sunshine hours?
\qquad
\qquad
(ii) Would the combined sunshine hours of Tauranga and Hokitika be more or less than the combined sunshine hours for Nelson and Invercargill? What do you think? Show any working.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) This graph is a V-shape. What would the shape be like if it was showing mean temperature rather than sunshine hours?
\qquad
\qquad
\qquad
\qquad
\qquad

SPYDER

The Spyder calculator is another grand design from Mahobe Resources (NZ) Ltd. It is recommended by The New Zealand Centre of Mathematics. Purchase it direct from the Mahobe website and support more projects like this publication.
www.mahobe.co.nz.

Is there a piece missing in your Mathematics?

SPYDER
The Spyder calculator is another grand design from Mahobe Resources (NZ) Ltd. Purchase it direct from the Mahobe website and support more projects like this publication.

Coordinate drawing

On a piece of graph paper, plot the following points on a 33 by 46 graph. Connect the dots as you go to create the picture.

(x,y)					
START					
$(19,4)$	$(16,14)$	$(8,20)$	$(15,21)$	$(29,28)$	$(30,12)$
$(20,6)$	$(15,17)$	$(8,23)$	$(19,24)$	$(27,28)$	$(31,9)$
$(21,7)$	$(14,17)$	$(9,21)$	$(16,21)$	$(27,24)$	$(33,9)$
$(20,7)$	$(14,15)$	$(10,21)$	$(17,21)$	$(30,20)$	$(31,8)$
$(19,8)$	$(13,16)$	$(11,23)$	$(20,23)$	$(28,22)$	$(29,12)$
$(18,9)$	$(13,15)$	$(11,21)$	$(18,20)$	$(25,22)$	$(28,13)$
$(17,11)$	$(12,16)$	$(12,21)$	$(19,20)$	$(23,20)$	$(25,13)$
$(15,13)$	$(14,18)$	$(12,23)$	$(21,22)$	$(24,19)$	$(24,11)$
$(15,9)$	$(13,19)$	$(11,24)$	$(22,25)$	$(21,16)$	$(24,8)$
$(13,10)$	$(12,19)$	$(9,23)$	$(21,28)$	$(23,15)$	$(23,7)$
$(11,10)$	$(12,18)$	$(9,25)$	$(17,36)$	$(21,15)$	$(22,7)$
$(10,9)$	$(13,18)$	$(8,27)$	$(28,46)$	$(21,14)$	$(22,4)$
$(10,10)$	$(12,17)$	$(6,27)$	$(24,41)$	$(22,13)$	$(21,5)$
$(9,9)$	$(10,18)$	$(4,26)$	$(25,39)$	$(22,12)$	$(21,3)$
$(10,11)$	$(11,17)$	$(6,28)$	$(28,36)$	$(21,10)$	$(20,4)$
$(9,10)$	$(9,17)$	$(7,30)$	$(32,34)$	$(22,10)$	$(20,3)$
$(10,12)$	$(8,15)$	$(6,32)$	$(29,35)$	$(22,9)$	$(19,4)$
$(12,11)$	$(8,17)$	$(2,36)$	$(27,35)$	$(23,9)$	STOP
$(14,11)$	$(7,16)$	$(7,33)$	$(26,34)$	$(23,11)$	
$(14,12)$	$(6,17)$	$(11,32)$	$(27,32)$	$(24,13)$	
$(13,13)$	$(8,19)$	$(12,27)$	$(29,29)$	$(25,14)$	
$(14,14)$	$(7,21)$	$(14,23)$	$(32,26)$	$(28,14)$	

Coordinate drawing

On a piece of graph paper, plot the following points on a 33 by 46 graph. Connect the dots as you go to create the picture.

(x, y)					
START					
$(5,2)$	$(9,23)$	$(15,32)$	$(29,18)$	$(26,6)$	$(14,3)$
$(6,3)$	$(9,22)$	$(13,31)$	$(28,16)$	$(28,4)$	$(12,3)$
$(6,4)$	$(8,21)$	$(15,31)$	$(28,15)$	$(27,4)$	$(13,4)$
$(8,5)$	$(7,22)$	$(17,30)$	$(27,14)$	$(27,3)$	$(16,8)$
$(9,7)$	$(7,25)$	$(14,30)$	$(27,12)$	$(26,4)$	$(16,11)$
$(11,12)$	$(6,26)$	$(16,29)$	$(29,11)$	$(26,3)$	$(15,14)$
$(11,14)$	$(7,28)$	$(15,29)$	$(30,11)$	$(24,3)$	$(14,12)$
$(9,14)$	$(6,28)$	$(17,28)$	$(31,12)$	$(25,4)$	$(12,10)$
$(6,13)$	$(5,27)$	$(18,27)$	$(30,10)$	$(25,7)$	$(11,8)$
$(6,11)$	$(5,29)$	$(17,27)$	$(28,10)$	$(24,9)$	$(9,5)$
$(7,11)$	$(4,29)$	$(18,26)$	$(26,11)$	$(24,10)$	$(10,4)$
$(8,10)$	$(6,30)$	$(18,25)$	$(25,13)$	$(23,11)$	$(9,4)$
$(7,10)$	$(2,34)$	$(19,25)$	$(25,15)$	$(21,14)$	$(9,2)$
$(8,9)$	$(7,31)$	$(18,24)$	$(26,17)$	$(20,14)$	$(8,3)$
$(6,9)$	$(8,32)$	$(19,23)$	$(26,19)$	$(18,12)$	$(7,2)$
$(5,11)$	$(9,32)$	$(19,22)$	$(25,20)$	$(18,9)$	$(5,2)$
$(5,14)$	$(10,33)$	$(21,22)$	$(23,20)$	$(16,5)$	STOP
$(8,16)$	$(10,32)$	$(23,21)$	$(24,18)$	$(17,3)$	
$(8,17)$	$(11,32)$	$(25,22)$	$(24,14)$	$(16,4)$	
$(9,18)$	$(13,33)$	$(26,22)$	$(25,11)$	$(16,3)$	
$(10,24)$	$(12,32)$	$(28,20)$	$(26,9)$	$(15,4)$	

[^0]: Yr 9 Maths Term 3 Practice Exam

[^1]: Yr 9 Maths Term 3 Practice Exam

[^2]: Yr 9 - End Term 3 NumAIGeom

[^3]: Yr 9 - End Term 3 NumAIGeom

[^4]: Yr 9 - End Term 3 MeasStats

